首页> 外文OA文献 >Planar Cell Polarity Enables Posterior Localization of Nodal Cilia and Left-Right Axis Determination during Mouse and Xenopus Embryogenesis
【2h】

Planar Cell Polarity Enables Posterior Localization of Nodal Cilia and Left-Right Axis Determination during Mouse and Xenopus Embryogenesis

机译:平面细胞极性使小鼠和非洲爪蟾胚胎发生过程中节点纤毛的后部定位和左右轴确定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.
机译:脊椎动物的左右不对称性起源于早期的胚胎结构,称为人和小鼠的腹侧结节,而蛙的胃小肠顶板(GRP)也是如此。在这些结构中,每个上皮细胞带有单个活动纤毛,并且这些纤毛的一致跳动产生向左流动的流体,这是启动左右不对称基因表达所必需的。认为向左的流体流动是由纤毛的后倾斜引起的,该纤毛从每个细胞的顶表面的后部附近突出。因此,细胞显示出形态平面极化。平面细胞极性(PCP)表现为上皮片层内细胞的协调极化方向,或表现为在趋向延伸过程中定向细胞迁移和嵌入。一组进化上保守的蛋白质调节PCP。在这里,我们提供了证据,脊椎动物PCP蛋白调节小鼠腹侧结节和非洲爪蟾小肠顶板中的平面极性。 VANGL1和PRICKLE2(PK2)在小鼠腹侧结节细胞中的不对称前定位表明这些细胞是通过保守的分子机制平面极化的。弱渗透Vangl1突变表型表明受损的Vangl1功能可能与左右偏侧缺陷相关。更强大的功能证据来自非洲爪蟾(Xenopus)GRP,我们在这里显示VANGL2蛋白功能的扰动破坏了向左流动的所需运动性纤毛的后部定位,并导致左侧特异性基因Nodal的异常表达。在小鼠和非洲爪蟾胚胎组织者中观察到前后PCP反映了该机制的强大进化保守性,这对于确定人体计划很重要。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号